Cha S-H, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent
biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano
9:9097–9105
Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper
nanoparticles. Nanotechnology 25:135101
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of
bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333
Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of
silver nanoparticles. Front Microbiol 7:1831
Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of
hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd
(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640
Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of
CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J Nanosci
Nanotechnol 15:4200–4204
Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles:
a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med
12:789–799
Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ (2012) Fructose-
enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine 7:537
Erdem A, Metzler D, Cha DK, Huang C (2015) The short-term toxic effects of TiO2 nanoparticles
toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ Sci Pollut
Res 22:17917–17924
Esfandiari N, Simchi A, Bagheri R (2014) Size tuning of Ag-decorated TiO2 nanotube arrays for
improved bactericidal capacity of orthopedic implants. J Biomed Mater Res A 102:2625–2635
Fang B, Jiang Y, Nüsslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing
cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation
affects killing activity and kinetics. Colloids Surf B Biointerfaces 125:255–263
Farouk SN, Muhammad A, Aminu Muhammad A (2018) Application of nanomaterials as antimi-
crobial agents: a review. Arch Nano Open Access J 1:3. https://doi.org/10.32474/ANOAJ.2018.
01.000114
Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium
dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:
1847–1868
Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against
bacterial infections. Wires Nanomed Nanobi 6:532–547
Ghosh S et al (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and
evaluation of its synergistic potential in combination with antimicrobial agents. Int J
Nanomedicine 7:483
Guisbiers G et al (2016) Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized
by pulsed laser ablation in deionized water. Int J Nanomedicine 11:3731
Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm
activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale
Res Lett 9:373
Hajipour MJ et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511
Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211
Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la
Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Strepto-
coccus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109
Hsueh P-R (2010) New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among
Enterobacteriaceae. J Formos Med Assoc 109:685–687
Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using
nanomaterials in the antibiotics resistant era. J Control Release 156:128–145
174
A. Parmar and S. Sharma